En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
ألاسم
أَدْرَكَ
الفعل
أَطْوَلَ ; اِفْتَرَشَ ; اِمْتَدَّ ; اِنْبَثَّ ; اِنْبَسَطَ ; اِنْتَشَرَ ; بَثَّ ; بَسَّطَ ; بَسَطَ ; بَلَغَ ; تَأَدَّى إِلَى ; تَوَصَّلَ ; سَطَحَ ; طَوَّلَ ; فَرَشَ ; مَتَّ ; مَدَّ ; مَدَّدَ ; مَشَقَ ; نَشَرَ ; نَشَّرَ ; وَصَلَ ( إِلَى )
In graph theory, reachability refers to the ability to get from one vertex to another within a graph. A vertex can reach a vertex (and is reachable from ) if there exists a sequence of adjacent vertices (i.e. a walk) which starts with and ends with .
In an undirected graph, reachability between all pairs of vertices can be determined by identifying the connected components of the graph. Any pair of vertices in such a graph can reach each other if and only if they belong to the same connected component; therefore, in such a graph, reachability is symmetric ( reaches iff reaches ). The connected components of an undirected graph can be identified in linear time. The remainder of this article focuses on the more difficult problem of determining pairwise reachability in a directed graph (which, incidentally, need not be symmetric).